Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Methods Mol Biol ; 2784: 203-214, 2024.
Article En | MEDLINE | ID: mdl-38502488

Nuclear architecture is a potential regulator of gene expression in eukaryotic cells. Studies connecting nuclear architecture to gene expression are often population-averaged and do not report on the cell-level heterogeneity in genome organization and associated gene expression. In this report we present a simple way to combine fluorescence in situ hybridization (FISH)-based detection of DNA, with single-molecule RNA FISH (smFISH) and immunofluorescence (IF), while also preserving the three-dimensional (3D) nuclear architecture of a cell. Recently developed smFISH techniques enable the detection of individual RNA molecules; while using 3D DNA FISH, copy numbers and positions of genes inside the nucleus can be interrogated without interfering with 3D nuclear architecture. Our method to combine 3D DNA FISH with smFISH and IF enables a unique quantitative handle on the central dogma of molecular biology.


DNA , RNA , RNA/genetics , In Situ Hybridization, Fluorescence/methods , DNA/genetics , Fluorescent Antibody Technique , Genome
2.
J Biol Chem ; 299(11): 105311, 2023 11.
Article En | MEDLINE | ID: mdl-37797694

While the role of endocytosis in focal adhesion turnover-coupled cell migration has been established in addition to its conventional role in cellular functions, the molecular regulators and precise molecular mechanisms that underlie this process remain largely unknown. In this study, we report that proto-oncoprotein hematopoietic PBX-interacting protein (HPIP) localizes to focal adhesions as well as endosomal compartments along with RUN FYVE domain-containing protein 3 (RUFY3) and Rab5, an early endosomal protein. HPIP contains two coiled-coil domains (CC1 and CC2) that are necessary for its association with Rab5 and RUFY3 as CC domain double mutant, that is, mtHPIPΔCC1-2 failed to support it. Furthermore, we show that HPIP and RUFY3 activate Rab5 by serving as noncanonical guanine nucleotide exchange factors of Rab5. In support of this, either deletion of coiled-coil domains or silencing of HPIP or RUFY3 impairs Rab5 activation and Rab5-dependent cell migration. Mechanistic studies further revealed that loss of HPIP or RUFY3 expression severely impairs Rab5-mediated focal adhesion disassembly, FAK activation, fibronectin-associated-ß1 integrin trafficking, and thus cell migration. Together, this study underscores the importance of HPIP and RUFY3 as noncanonical guanine nucleotide exchange factors of Rab5 and in integrin trafficking and focal adhesion turnover, which implicates in cell migration.


Focal Adhesions , Guanine Nucleotide Exchange Factors , Cell Movement , Endocytosis , Focal Adhesions/genetics , Focal Adhesions/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , Humans , Cell Line , Cell Line, Tumor
3.
PLoS Genet ; 19(2): e1010622, 2023 02.
Article En | MEDLINE | ID: mdl-36730442

The Epidermal Growth Factor Receptor (EGFR) signaling pathway plays a critical role in regulating tissue patterning. Drosophila EGFR signaling achieves specificity through multiple ligands and feedback loops to finetune signaling outcomes spatiotemporally. The principal Drosophila EGF ligand, cleaved Spitz, and the negative feedback regulator, Argos are diffusible and can act both in a cell autonomous and non-autonomous manner. The expression dose of Spitz and Argos early in photoreceptor cell fate determination has been shown to be critical in patterning the Drosophila eye, but the exact identity of the cells expressing these genes in the larval eye disc has been elusive. Using single molecule RNA Fluorescence in situ Hybridization (smFISH), we reveal an intriguing differential expression of spitz and argos mRNA in the Drosophila third instar eye imaginal disc indicative of directional non-autonomous EGFR signaling. By genetically tuning EGFR signaling, we show that rather than absolute levels of expression, the ratio of expression of spitz-to-argos to be a critical determinant of the final adult eye phenotype. Proximate effects on EGFR signaling in terms of cell cycle and differentiation markers are affected differently in the different perturbations. Proper ommatidial patterning is robust to thresholds around a tightly maintained wildtype spitz-to-argos ratio, and breaks down beyond. This provides a powerful instance of developmental buffering against gene expression fluctuations.


Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , In Situ Hybridization, Fluorescence , Epidermal Growth Factor/genetics , Signal Transduction/genetics , Eye/metabolism , Receptors, Invertebrate Peptide/genetics , Receptors, Invertebrate Peptide/metabolism
4.
FEBS J ; 289(6): 1575-1590, 2022 03.
Article En | MEDLINE | ID: mdl-34668648

Hematopoietic PBX-interacting protein (HPIP, also known as PBXIP1) is an estrogen receptor (ER) interacting protein that regulates estrogen-mediated breast cancer cell proliferation and tumorigenesis. However, its functional significance in the context of mammary gland development is unexplored. Here, we report that HPIP is required for prolactin (PRL)-induced lactogenic differentiation in vitro. Molecular analysis of HPIP expression in mice revealed its induced expression at pregnancy and lactation stages of mammary gland. Moreover, PRL is a lactogenic hormone that controls pregnancy as well as lactation and induces Hpip/Pbxip1 expression in a signal transducer and activator of transcription 5a-dependent manner. Using mammary epithelial and lactogenic-competent cell lines, we further show that HPIP plays a regulatory role in PRL-mediated mammary epithelial cell differentiation, which is measured by acini formation, ß-casein synthesis, and lipid droplet formation. Further mechanistic studies using pharmacological inhibitors revealed that HPIP modulates PRL-induced ß-casein synthesis via phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) activation. This study also identified HPIP as a critical regulator of autocrine PRL signaling as treatment with the PRL receptor antagonist Δ1-9-G129R-hPRL restrained HPIP-mediated PRL synthesis, AKT activation, and ß-casein synthesis in cultured HC11 cells. Interestingly, we also uncovered that microRNA-148a (miR-148a) antagonizes HPIP-mediated mammary epithelial cell differentiation. Together, our study identified HPIP as a critical regulator of PRL signaling and revealed a novel molecular circuitry involving PRL, HPIP, PI3K/AKT, and miR-148a that controls mammary epithelial cell differentiation in vitro.


MicroRNAs , Proto-Oncogene Proteins c-akt , Animals , Caseins/genetics , Caseins/metabolism , Cell Differentiation , Co-Repressor Proteins , Epithelial Cells/metabolism , Female , Mammary Glands, Animal , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pregnancy , Prolactin/genetics , Prolactin/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
5.
Cell Rep ; 33(4): 108302, 2020 10 27.
Article En | MEDLINE | ID: mdl-33113374

The mechanisms that guide the clonally stable random mono-allelic expression of autosomal genes remain enigmatic. We show that (1) mono-allelically expressed (MAE) genes are assorted and insulated from bi-allelically expressed (BAE) genes through CTCF-mediated chromatin loops; (2) the cell-type-specific dynamics of mono-allelic expression coincides with the gain and loss of chromatin insulator sites; (3) dosage of MAE genes is more sensitive to the loss of chromatin insulation than that of BAE genes; and (4) inactive alleles of MAE genes are significantly more insulated than active alleles and are de-repressed upon CTCF depletion. This alludes to a topology wherein the inactive alleles of MAE genes are insulated from the spatial interference of transcriptional states from the neighboring bi-allelic domains via CTCF-mediated loops. We propose that CTCF functions as a typical insulator on inactive alleles, but facilitates transcription through enhancer-linking on active allele of MAE genes, indicating widespread allele-specific regulatory roles of CTCF.


CCCTC-Binding Factor/metabolism , Genes/genetics , Genomics/methods , Humans , Mitosis
6.
J Cell Sci ; 133(20)2020 10 30.
Article En | MEDLINE | ID: mdl-32973112

Nuclear shape and size are cell-type specific. Change in nuclear shape is seen during cell division, development and pathology. The nucleus of Saccharomycescerevisiae is spherical in interphase and becomes dumbbell shaped during mitotic division to facilitate the transfer of one nucleus to the daughter cell. Because yeast cells undergo closed mitosis, the nuclear envelope remains intact throughout the cell cycle. The pathways that regulate nuclear shape are not well characterized. The nucleus is organized into various subcompartments, with the nucleolus being the most prominent. We have conducted a candidate-based genetic screen for nuclear shape abnormalities in S. cerevisiae to ask whether the nucleolus influences nuclear shape. We find that increasing nucleolar volume triggers a non-isometric nuclear envelope expansion resulting in an abnormal nuclear envelope shape. We further show that the tethering of rDNA to the nuclear envelope is required for the appearance of these extensions.


Nuclear Envelope , Saccharomyces cerevisiae , Cell Nucleolus , Cell Nucleus/genetics , Mitosis , Saccharomyces cerevisiae/genetics
7.
Mol Cell Biol ; 40(20)2020 09 28.
Article En | MEDLINE | ID: mdl-32778572

Ultraviolet (UV) radiation is a major environmental mutagen. Exposure to UV leads to a sharp peak of γH2AX, the phosphorylated form of the histone variant H2AX, in the S phase within an asynchronous population of cells. γH2AX is often considered a definitive marker of DNA damage inside a cell. In this report, we show that γH2AX in the S-phase cells after UV irradiation reports neither on the extent of primary DNA damage in the form of cyclobutane pyrimidine dimers nor on the extent of its secondary manifestations in the form of DNA double-strand breaks or in the inhibition of global transcription. Instead, γH2AX in the S phase corresponds to the sites of active replication at the time of UV irradiation. This accumulation of γH2AX at replication sites slows down the replication. However, the cells do complete the replication of their genomes and arrest within the G2 phase. Our study suggests that it is not DNA damage, but the response elicited, which peaks in the S phase upon UV irradiation.


DNA Breaks, Double-Stranded/radiation effects , DNA Replication/genetics , Histones/genetics , Pyrimidine Dimers/radiation effects , S Phase/radiation effects , A549 Cells , Cell Line, Tumor , DNA/biosynthesis , DNA Repair/genetics , DNA Replication/radiation effects , Humans , Phosphorylation/radiation effects , S Phase/genetics , Ultraviolet Rays
8.
J Cell Sci ; 133(12)2020 06 24.
Article En | MEDLINE | ID: mdl-32467328

Nuclear architecture is the organization of the genome within a cell nucleus with respect to different nuclear landmarks such as the nuclear lamina, nuclear matrix or nucleoli. Recently, nuclear architecture has emerged as a major regulator of gene expression in mammalian cells. However, studies connecting nuclear architecture with gene expression are largely population-averaged and do not report on the heterogeneity in genome organization or gene expression within a population. In this report we present a method for combining 3D DNA fluorescence in situ hybridization (FISH) with single-molecule RNA FISH (smFISH) and immunofluorescence to study nuclear architecture-dependent gene regulation on a cell-by-cell basis. We further combine our method with imaging-based cell cycle staging to correlate nuclear architecture with gene expression across the cell cycle. We present this in the context of the cyclin-A2 (CCNA2) gene, which has known cell cycle-dependent expression. We show that, across the cell cycle, the expression of a CCNA2 gene copy is stochastic and depends neither on its sub-nuclear position - which usually lies close to nuclear lamina - nor on the expression from other copies of the gene.This article has an associated First Person interview with the first author of the paper.


Cell Nucleus , Alleles , Animals , Cell Cycle/genetics , Cell Nucleus/genetics , Gene Expression , In Situ Hybridization, Fluorescence
9.
Mol Biol Cell ; 31(13): 1403-1410, 2020 06 15.
Article En | MEDLINE | ID: mdl-32320322

In the eukaryotic nucleus, DNA, packaged in the form of chromatin, is subject to continuous damage. Chromatin has to be remodeled in order to repair such damage efficiently. But compact chromatin may also be more refractory to damage. Chromatin responses during DNA double-strand break (DSB) repair have been studied with biochemistry or as indirect readouts for the physical state of the chromatin at the site of damage. Direct measures of global chromatin compaction upon damage are lacking. We used fluorescence anisotropy imaging of histone H2B-EGFP to interrogate global chromatin compaction changes in response to localized DSBs directly. Anisotropy maps were preserved in fixation and reported on underlying chromatin compaction states. Laser-induced clustered DSBs led to global compaction of even the undamaged chromatin. Live-cell dynamics could be coupled with fixed-cell assays. Repair factors, PARP1 and PCNA, were immediately recruited to the site of damage, though the local enrichment of PCNA persisted longer than that of PARP1. Subsequently, nodes of PCNA that incorporated deoxynucleotide analogs were observed in regions of low-anisotropy open chromatin, even away from the site of damage. Such fluorescence anisotropy-based readout of chromatin compaction may be used in the investigation of different forms of DNA damage.


Chromatin Assembly and Disassembly , DNA Breaks, Double-Stranded , DNA Repair , Histones/analysis , Poly (ADP-Ribose) Polymerase-1/analysis , Proliferating Cell Nuclear Antigen/analysis , Animals , Chromatin , DNA/metabolism , DNA/radiation effects , DNA Packaging , Fluorescence Polarization , HeLa Cells , Histones/metabolism , Humans , Light , Mice , NIH 3T3 Cells , Poly (ADP-Ribose) Polymerase-1/metabolism , Proliferating Cell Nuclear Antigen/metabolism
10.
J Biol Chem ; 294(26): 10236-10252, 2019 06 28.
Article En | MEDLINE | ID: mdl-31101654

Proper cell division relies on the coordinated regulation between a structural component, the mitotic spindle, and a regulatory component, anaphase-promoting complex/cyclosome (APC/C). Hematopoietic PBX-interacting protein (HPIP) is a microtubule-associated protein that plays a pivotal role in cell proliferation, cell migration, and tumor metastasis. Here, using HEK293T and HeLa cells, along with immunoprecipitation and immunoblotting, live-cell imaging, and protein-stability assays, we report that HPIP expression oscillates throughout the cell cycle and that its depletion delays cell division. We noted that by utilizing its D box and IR domain, HPIP plays a dual role both as a substrate and inhibitor, respectively, of the APC/C complex. We observed that HPIP enhances the G2/M transition of the cell cycle by transiently stabilizing cyclin B1 by preventing APC/C-Cdc20-mediated degradation, thereby ensuring timely mitotic entry. We also uncovered that HPIP associates with the mitotic spindle and that its depletion leads to the formation of multiple mitotic spindles and chromosomal abnormalities, results in defects in cytokinesis, and delays mitotic exit. Our findings uncover HPIP as both a substrate and an inhibitor of APC/C-Cdc20 that maintains the temporal stability of cyclin B1 during the G2/M transition and thereby controls mitosis and cell division.


Anaphase-Promoting Complex-Cyclosome/metabolism , Cdc20 Proteins/metabolism , Cell Cycle , Cyclin B1/chemistry , Gene Expression Regulation/drug effects , Intracellular Signaling Peptides and Proteins/pharmacology , Mitosis , Anaphase-Promoting Complex-Cyclosome/antagonists & inhibitors , Anaphase-Promoting Complex-Cyclosome/genetics , Cdc20 Proteins/antagonists & inhibitors , Cdc20 Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Spindle Apparatus , Substrate Specificity
11.
Sci Signal ; 12(568)2019 02 12.
Article En | MEDLINE | ID: mdl-30755477

DNA-alkylating agents are commonly used to kill cancer cells, but the base excision repair (BER) pathway they trigger can also produce toxic intermediates that cause tissue damage, such as retinal degeneration (RD). Apoptosis, a process of programmed cell death, is assumed to be the main mechanism of this alkylation-induced photoreceptor (PR) cell death in RD. Here, we studied the involvement of necroptosis (another programmed cell death process) and inflammation in alkylation-induced RD. Male mice exposed to a methylating agent exhibited a reduced number of PR cell rows, active gliosis, and cytokine induction and macrophage infiltration in the retina. Dying PRs exhibited a necrotic morphology, increased 8-hydroxyguanosine abundance (an oxidative damage marker), and overexpression of the necroptosis-associated genes Rip1 and Rip3 The activity of PARP1, which mediates BER, cell death, and inflammation, was increased in PR cells and associated with the release of proinflammatory chemokine HMGB1 from PR nuclei. Mice lacking the anti-inflammatory cytokine IL-10 exhibited more severe RD, whereas deficiency of RIP3 (also known as RIPK3) conferred partial protection. Female mice were partially protected from alkylation-induced RD, showing reduced necroptosis and inflammation compared to males. PRs in mice lacking the BER-initiating DNA glycosylase AAG did not exhibit alkylation-induced necroptosis or inflammation. Our findings show that AAG-initiated BER at alkylated DNA bases induces sex-dependent RD primarily by triggering necroptosis and activating an inflammatory response that amplifies the original damage and, furthermore, reveal new potential targets to prevent this side effect of chemotherapy.


DNA Glycosylases/metabolism , DNA Repair , Inflammation/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Retinal Degeneration/metabolism , Animals , Antineoplastic Agents, Alkylating/adverse effects , Apoptosis/drug effects , Apoptosis/genetics , Cell Death/drug effects , Cell Death/genetics , DNA Glycosylases/genetics , Female , Inflammation/genetics , Inflammation/pathology , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Necrosis , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Retinal Degeneration/chemically induced , Retinal Degeneration/genetics
12.
Mech Dev ; 153: 10-16, 2018 10.
Article En | MEDLINE | ID: mdl-30118816

Single molecule Fluorescence in situ Hybridization (smFISH) for mRNA provides a powerful quantitative handle on expression from endogenous gene loci. While the method has been widely applied in cells in culture, applications to primary tissue samples remain fewer, and often use involved cryosectioning. Even apart from quantitative access to absolute transcript counts in specific tissue volumes, many other advantages of smFISH can be envisaged in tissue samples. Primary among these are the ability to report on subtle differences in expression among different cell types within a tissue, and the ability to correlate the expression from different target genes. Here, we present a modified method of smFISH applicable on various primary wholemount tissues from the fruit fly Drosophila melanogaster, and show the efficacy of the method in a variety of larval and adult tissue, and embryos. We also combine smFISH in tissue with immunofluorescence to demonstrate the possibility of capturing transcriptional and translational aspects of gene expression in the same tissue. Given the widespread use of Drosophila melanogaster as a model system in Developmental Biology and Genetics, such methods are likely to be of wide interest and could yield rich information about gene expression in tissues from this organism.


Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Imaging, Three-Dimensional , Organ Specificity/genetics , Animals , Embryo, Nonmammalian/metabolism , Genes, Insect , Imaginal Discs/embryology , Imaginal Discs/metabolism , In Situ Hybridization, Fluorescence , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Wings, Animal/embryology , Wings, Animal/metabolism
13.
Cell Cycle ; 17(11): 1358-1371, 2018.
Article En | MEDLINE | ID: mdl-29963960

DNA damage in cells occurs from both endogenous and exogenous sources, and failure to repair such damage is associated with the emergence of different cancers, neurological disorders and aging. DNA damage responses (DDR) in cells are closely associated with the cell cycle. While most of our knowledge of DDR comes from bulk biochemistry, such methods require cells to be arrested at specific stages for cell cycle studies, potentially altering measured responses; nor is cell to cell variability in DDR or direct cell-level correlation of two response metrics measured in such methods. To overcome these limitations we developed a microscopy-based assay for determining cell cycle stages over large cell numbers. This method can be used to study cell-cycle-dependent DDR in cultured cells without the need for cell synchronization. Upon DNA damage γH2A.X induction was correlated to nuclear enrichment of p53 on a cell-by-cell basis and in a cell cycle dependent manner. Imaging-based cell cycle staging was combined with single molecule P53 mRNA detection and immunofluorescence for p53 protein in the very same cells to reveal an intriguing repression of P53 transcript numbers due to reduced transcription across different stages of the cell cycle during DNA damage. Our study hints at an unexplored mechanism for p53 regulation and underscores the importance of measuring single cell level responses to DNA damage.


Cell Cycle , DNA Damage , Image Processing, Computer-Assisted , Tumor Suppressor Protein p53/metabolism , Biomarkers, Tumor/metabolism , DNA/metabolism , Gene Expression Regulation, Neoplastic , HeLa Cells , Histones/metabolism , Humans , Transcription, Genetic , Tumor Suppressor Protein p53/genetics
14.
PLoS One ; 12(9): e0184619, 2017.
Article En | MEDLINE | ID: mdl-28886188

Alkylating agents are ubiquitous in our internal and external environments, causing DNA damage that contributes to mutations and cell death that can result in aging, tissue degeneration and cancer. Repair of methylated DNA bases occurs primarily through the base excision repair (BER) pathway, a multi-enzyme pathway initiated by the alkyladenine DNA glycosylase (Aag, also known as Mpg). Previous work demonstrated that mice treated with the alkylating agent methyl methanesulfonate (MMS) undergo cerebellar degeneration in an Aag-dependent manner, whereby increased BER initiation by Aag causes increased tissue damage that is dependent on activation of poly (ADP-ribose) polymerase 1 (Parp1). Here, we dissect the molecular mechanism of cerebellar granule neuron (CGN) sensitivity to MMS using primary ex vivo neuronal cultures. We first established a high-throughput fluorescent imaging method to assess primary neuron sensitivity to treatment with DNA damaging agents. Next, we verified that the alkylation sensitivity of CGNs is an intrinsic phenotype that accurately recapitulates the in vivo dependency of alkylation-induced CGN cell death on Aag and Parp1 activity. Finally, we show that MMS-induced CGN toxicity is independent of all the cellular events that have previously been associated with Parp-mediated toxicity, including mitochondrial depolarization, AIF translocation, calcium fluxes, and NAD+ consumption. We therefore believe that further investigation is needed to adequately describe all varieties of Parp-mediated cell death.


Cerebellum/cytology , DNA Glycosylases/metabolism , Neurons/cytology , Neurons/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Alkylating Agents/pharmacology , Alkylation/drug effects , Animals , Cell Death/drug effects , Cells, Cultured , DNA Glycosylases/genetics , DNA Repair/drug effects , DNA Repair/genetics , In Situ Hybridization, Fluorescence , Methyl Methanesulfonate/pharmacology , Mice , Poly (ADP-Ribose) Polymerase-1/genetics
15.
Proc Natl Acad Sci U S A ; 111(45): E4878-86, 2014 Nov 11.
Article En | MEDLINE | ID: mdl-25349415

Inflammation is accompanied by the release of highly reactive oxygen and nitrogen species (RONS) that damage DNA, among other cellular molecules. Base excision repair (BER) is initiated by DNA glycosylases and is crucial in repairing RONS-induced DNA damage; the alkyladenine DNA glycosylase (Aag/Mpg) excises several DNA base lesions induced by the inflammation-associated RONS release that accompanies ischemia reperfusion (I/R). Using mouse I/R models we demonstrate that Aag(-/-) mice are significantly protected against, rather than sensitized to, I/R injury, and that such protection is observed across three different organs. Following I/R in liver, kidney, and brain, Aag(-/-) mice display decreased hepatocyte death, cerebral infarction, and renal injury relative to wild-type. We infer that in wild-type mice, Aag excises damaged DNA bases to generate potentially toxic abasic sites that in turn generate highly toxic DNA strand breaks that trigger poly(ADP-ribose) polymerase (Parp) hyperactivation, cellular bioenergetics failure, and necrosis; indeed, steady-state levels of abasic sites and nuclear PAR polymers were significantly more elevated in wild-type vs. Aag(-/-) liver after I/R. This increase in PAR polymers was accompanied by depletion of intracellular NAD and ATP levels plus the translocation and extracellular release of the high-mobility group box 1 (Hmgb1) nuclear protein, activating the sterile inflammatory response. We thus demonstrate the detrimental effects of Aag-initiated BER during I/R and sterile inflammation, and present a novel target for controlling I/R-induced injury.


Brain/enzymology , DNA Glycosylases/metabolism , DNA Repair , Kidney/enzymology , Liver/enzymology , Reperfusion Injury/enzymology , Acute Kidney Injury/enzymology , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Animals , Brain/pathology , Brain Infarction/enzymology , Brain Infarction/genetics , Brain Infarction/pathology , Cell Death , DNA Damage , DNA Glycosylases/genetics , Enzyme Induction/genetics , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Hepatocytes/enzymology , Hepatocytes/pathology , Inflammation/enzymology , Inflammation/genetics , Inflammation/pathology , Kidney/pathology , Liver/pathology , Mice , Mice, Knockout , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology
16.
mBio ; 5(1): e01086-13, 2014 Feb 04.
Article En | MEDLINE | ID: mdl-24496796

UNLABELLED: Herpes simplex virus (HSV) utilizes and subverts host chromatin mechanisms to express its lytic gene products in mammalian cells. The host cell attempts to silence the incoming viral genome by epigenetic mechanisms, but the viral VP16 and ICP0 proteins promote active chromatin on the viral genome by recruiting other host epigenetic factors. However, the dependence on VP16 and ICP0 differs in different cell lines, implying cell type-dependent functional contributions of epigenetic factors for HSV gene expression. In this study, we performed a targeted RNA interference (RNAi) screen for cellular chromatin factors that are involved in regulation of herpes simplex virus (HSV) gene expression in U2OS osteosarcoma cells, a cell line that complements ICP0 mutant and VP16 mutant virus replication. In this screen, we found the same general classes of chromatin factors that regulate HSV gene expression in U2OS cells as in other cell types, including histone demethylases (HDMs), histone deacetylases (HDACs), histone acetyltransferases (HATs), and chromatin-remodeling factors, but the specific factors within these classes are different from those identified previously for other cell types. For example, KDM3A and KDM1A (LSD1) both demethylate mono- and dimethylated H3K9, but KDM3A emerged in our screen of U2OS cells. Further, small interfering RNA (siRNA) and inhibitor studies support the idea that KDM1A is more critical in HeLa cells, as observed previously, while KDM3A is more critical in U2OS cells. These results argue that different cellular chromatin factors are critical in different cell lines to carry out the positive and negative epigenetic effects exerted on the HSV genome. IMPORTANCE: Upon entry into the host cell nucleus, the herpes simplex virus genome is subjected to host epigenetic silencing mechanisms. Viral proteins recruit cellular epigenetic activator proteins to reverse and counter the cellular silencing mechanisms. Some of the host silencing and activator functions involved in HSV gene expression have been identified, but there have been indications that the host cell factors may vary in different cell types. In this study, we performed a screen of chromatin factors involved in HSV gene regulation in osteosarcoma cells, and we found that the chromatin factors that are critical for HSV gene expression in these cells are different from those for previously studied cell types. These results argue that the specific chromatin factors operative in different cell lines and cell types may differ. This has implications for epigenetic drugs that are under development.


Epigenesis, Genetic , Gene Expression Regulation, Viral , Genetic Testing/methods , Host-Pathogen Interactions , Simplexvirus/genetics , Cell Line, Tumor , Humans , RNA Interference , Simplexvirus/physiology
17.
Nucleic Acids Res ; 41(20): 9310-24, 2013 Nov.
Article En | MEDLINE | ID: mdl-23935119

An effective response to DNA damaging agents involves modulating numerous facets of cellular homeostasis in addition to DNA repair and cell-cycle checkpoint pathways. Fluorescence microscopy-based imaging offers the opportunity to simultaneously interrogate changes in both protein level and subcellular localization in response to DNA damaging agents at the single-cell level. We report here results from screening the yeast Green Fluorescent Protein (GFP)-fusion library to investigate global cellular protein reorganization on exposure to the alkylating agent methyl methanesulfonate (MMS). Broad groups of induced, repressed, nucleus- and cytoplasm-enriched proteins were identified. Gene Ontology and interactome analyses revealed the underlying cellular processes. Transcription factor (TF) analysis identified principal regulators of the response, and targets of all major stress-responsive TFs were enriched amongst the induced proteins. An unexpected partitioning of biological function according to the number of TFs targeting individual genes was revealed. Finally, differential modulation of ribosomal proteins depending on methyl methanesulfonate dose was shown to correlate with cell growth and with the translocation of the Sfp1 TF. We conclude that cellular responses can navigate different routes according to the extent of damage, relying on both expression and localization changes of specific proteins.


DNA Damage , DNA Repair , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae/genetics , Chromatin Assembly and Disassembly , Cytoplasm/chemistry , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Genome, Fungal , Lipids/biosynthesis , Methyl Methanesulfonate/toxicity , Nuclear Proteins/analysis , Protein Biosynthesis , Proteolysis , Ribosomal Proteins/biosynthesis , Ribosomal Proteins/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/analysis , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/metabolism
18.
PLoS Genet ; 9(8): e1003725, 2013.
Article En | MEDLINE | ID: mdl-23990805

The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z(AP3)) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z(AP3) interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z(AP3) was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z(AP3) ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z(AP3) ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z(AP3) displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z(AP3) mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment.


Cell Differentiation/genetics , Chromatin/genetics , Embryonic Development/genetics , Embryonic Stem Cells/cytology , Histones/genetics , Animals , Asparagine/genetics , Cell Lineage/genetics , Gene Expression Regulation, Developmental , Glycine/genetics , Mice , Nucleosomes/genetics , Promoter Regions, Genetic , Serine/genetics
19.
Mol Cell Biol ; 33(3): 635-42, 2013 Feb.
Article En | MEDLINE | ID: mdl-23184665

The ribonucleotide reductase (RNR) enzyme catalyzes an essential step in the production of deoxyribonucleotide triphosphates (dNTPs) in cells. Bulk biochemical measurements in synchronized Saccharomyces cerevisiae cells suggest that RNR mRNA production is maximal in late G(1) and S phases; however, damaged DNA induces RNR transcription throughout the cell cycle. But such en masse measurements reveal neither cell-to-cell heterogeneity in responses nor direct correlations between transcript and protein expression or localization in single cells which may be central to function. We overcame these limitations by simultaneous detection of single RNR transcripts and also Rnr proteins in the same individual asynchronous S. cerevisiae cells, with and without DNA damage by methyl methanesulfonate (MMS). Surprisingly, RNR subunit mRNA levels were comparably low in both damaged and undamaged G(1) cells and highly induced in damaged S/G(2) cells. Transcript numbers became correlated with both protein levels and localization only upon DNA damage in a cell cycle-dependent manner. Further, we showed that the differential RNR response to DNA damage correlated with variable Mec1 kinase activity in the cell cycle in single cells. The transcription of RNR genes was found to be noisy and non-Poissonian in nature. Our results provide vital insight into cell cycle-dependent RNR regulation under conditions of genotoxic stress.


DNA Damage , Gene Expression Regulation, Fungal , Ribonucleotide Reductases/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Single-Cell Analysis/methods , Cell Cycle , Fluorescent Antibody Technique/methods , In Situ Hybridization, Fluorescence/methods , Protein Biosynthesis , Protein Subunits/analysis , Protein Subunits/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , Ribonucleotide Reductases/analysis , Saccharomyces cerevisiae/cytology , Transcription, Genetic
20.
Methods Cell Biol ; 98: 221-39, 2010.
Article En | MEDLINE | ID: mdl-20816237

The nucleus is maintained in a prestressed state within eukaryotic cells, stabilized mechanically by chromatin structure and other nuclear components on its inside, and cytoskeletal components on its outside. Nuclear architecture is emerging to be critical to the governance of chromatin assembly, regulation of genome function and cellular homeostasis. Elucidating the prestressed organization of the nucleus is thus important to understand how the nuclear architecture impinges on its function. In this chapter, various chemical and mechanical methods have been described to probe the prestressed organization of the nucleus.


Cell Nucleus/genetics , Cell Nucleus/physiology , Cells/cytology , Chromatin Assembly and Disassembly/physiology , Animals , Biomechanical Phenomena/drug effects , Biomechanical Phenomena/genetics , Biomechanical Phenomena/physiology , Biomechanical Phenomena/radiation effects , Cell Nucleus/ultrastructure , Cells/drug effects , Cells/metabolism , Cells/radiation effects , Chromatin Assembly and Disassembly/drug effects , Chromatin Assembly and Disassembly/radiation effects , Cytoskeleton/chemistry , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/radiation effects , Enzyme Inhibitors/pharmacology , Humans , Lasers , Models, Biological , Photobleaching , Stress, Mechanical
...